Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(42): 21647-21656, 2020 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-32766635

RESUMO

Temperature is a key parameter for optimal cellular function and growth. Temperature perturbation may directly lead to cell death. This can be used in cancer therapies to kill cells in tumors, a therapeutic approach called hyperthermia. To avoid overheating of tumors that may damage healthy tissues, a knowledge of the intracellular temperature reached during the hyperthermia treatment of cancer cells is relevant. Recently, several luminescent intracellular nanothermometers have been proposed; however an application to sense temperature during a hyperthermia treatment is lacking. Here we present a technique to measure intracellular temperature changes in in vitro cancer cell models. For this purpose, we study for the first time the temperature dependence of the green fluorescent protein (GFP)'s fluorescence lifetime parameter. We find the fluorescence lifetime of GFP can be used for nanothermosensing. We use GFP in a bound form to actin filaments as an intracellular thermal reporter. Furthermore, we assess intracellular temperature during in vitro magnetothermal therapy on live HeLa cells incubated with polyacrylic acid-coated iron oxide nanoparticles. Compared to other thermosensitive materials and formulations reported so far, the GFP nanothermosensor is easily expressed via transfection and various GFP variants are commercially available. We foresee that the nanothermometer developed might find widespread applications in cancer therapy research and development.


Assuntos
Hipertermia Induzida , Neoplasias , Fluorescência , Células HeLa , Humanos , Hipertermia , Neoplasias/terapia , Temperatura
2.
Sci Rep ; 9(1): 7535, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31101860

RESUMO

Nanothermometry methods with intracellular sensitivities have the potential to make important contributions to fundamental cell biology and medical fields, as temperature is a relevant physical parameter for molecular reactions to occur inside the cells and changes of local temperature are well identified therapeutic strategies. Here we show how the GFP can be used to assess temperature-based on a novel fluorescence peak fraction method. Further, we use standard GFP transfection reagents to assess temperature intracellularly in HeLa cells expressing GFP in the mitochondria. High thermal resolution and sensitivity of around 0.26% °C-1 and 2.5% °C-1, were achieved for wt-GFP in solution and emGFP-Mito within the cell, respectively. We demonstrate that the GFP-based nanothermometer is suited to directly follow the temperature changes induced by a chemical uncoupler reagent that acts on the mitochondria. The spatial resolution allows distinguishing local heating variations within the different cellular compartments. Our discovery may lead to establishing intracellular nanothermometry as a standard method applicable to the wide range of live cells able to express GFP.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Fluorescência Verde/química , Mitocôndrias/metabolismo , Termometria/métodos , Técnicas Biossensoriais/instrumentação , Linhagem Celular Tumoral , Células HeLa , Humanos , Temperatura , Termômetros , Termometria/instrumentação , Sensação Térmica
3.
Front Chem ; 7: 88, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30859096

RESUMO

This study analyzes the mapping of temperature distribution generated by graphene in a glass slide cover after illumination at 808 nm with a good thermal resolution. For this purpose, Er,Yb:NaYF4 nanoparticles prepared by a microwave-assisted solvothermal method were used as upconversion luminescent nanothermometers. By tuning the basic parameters of the synthesis procedure, such as the time and temperature of reaction and the concentration of ethanol and water, we were able to control the size and the crystalline phase of the nanoparticles, and to have the right conditions to obtain 100% of the ß hexagonal phase, the most efficient spectroscopically. We observed that the thermal sensitivity that can be achieved with these particles is a function of the size of the nanoparticles and the crystalline phase in which they crystallize. We believe that, with suitable changes, these nanoparticles might be used in the future to map temperature gradients in living cells while maintaining a good thermal resolution.

4.
ACS Appl Mater Interfaces ; 8(11): 7266-73, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26949971

RESUMO

We studied the temperature-dependent luminescence of GdVO4 nanoparticles co-doped with Er(3+) (1 mol %) and Yb(3+) (20 mol %) and determined their thermal sensing properties through the fluorescence intensity ratio (FIR) technique. We also analyzed how a silica coating, in a core-shell structure, affects the temperature sensing properties of this material. Spectra were recorded in the range of biological temperatures (298-343 K). The absolute sensitivity for temperature determination calculated for the core-shell nanoparticles is double the one calculated for bare nanoparticles, achieving a thermal resolution of 0.4 K. Moreover, silica-coated nanoparticles show good dispersibility in different solvents, such as water, DMSO, and methanol. Also, they show good luminescence stability without interactions with solvent molecules. Furthermore, we also observed that the silica coating shell prevents progressive heating of the nanoparticles during prolonged excitation periods with the 980 nm laser, preventing effects on their thermometric applications.

5.
Appl Opt ; 53(10): B22-6, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24787207

RESUMO

Faraday rotation has been studied for CdS, CdTe, and CdS:Mn semiconductor nanoparticles synthesized by colloidal chemistry methods. Additionally these materials were prepared in a form of semiconductor nanoparticles embedded in polyvinyl alcohol films. Transmission electron microscopy and atomic force microscopy analyses served as confirmation of nanocrystallinity and estimation of the average size of the nanoparticles. Spectral dependence of the Faraday rotation for the studied nanocrystals and nanocomposites is correlated with a blueshift of the absorption edge due to the confinement effect in zero-dimensional structures. Faraday rotation spectra and their temperature behavior in Mn-doped nanocrystals demonstrates peculiarities, which are associated with s, p-d exchange interaction between Mn²âº ions and band carriers in diluted magnetic semiconductor nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...